NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
 (NAAC Accredited)

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE MATERIALS

ME304 DYNAMICS OF MACHINERY

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

- Established in: 2002
- Course offered : B.Tech in Mechanical Engineering
- Approved by AICTE New Delhi and Accredited by NAAC
- Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing internationally competitive Mechanical Engineers with social responsibility \& sustainable employability through viable strategies as well as competent exposure oriented quality education.

DEPARTMENT MISSION

1. Imparting high impact education by providing conductive teaching learning environment.
2. Fostering effective modes of continuous learning process with moral \& ethical values.
3. Enhancing leadership qualities with social commitment, professional attitude, unity, team spirit \& communication skill.
4. Introducing the present scenario in research \& development through collaborative efforts blended with industry \& institution.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates shall have strong practical \& technical exposures in the field of Mechanical Engineering \& will contribute to the society through innovation \& enterprise.
PEO2: Graduates will have the demonstrated ability to analyze, formulate \& solve design engineering / thermal engineering / materials \& manufacturing / design issues \& real life problems.
PEO3: Graduates will be capable of pursuing Mechanical Engineering profession with good communication skills, leadership qualities, team spirit \& communication skills.
PEO4: Graduates will sustain an appetite for continuous learning by pursuing higher education \& research in the allied areas of technology.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: graduates able to apply principles of engineering, basic sciences \& analytics including multi variant calculus \& higher order partial differential equations..

PSO2: Graduates able to perform modeling, analyzing, designing \& simulating physical systems, components \& processes.

PSO3: Graduates able to work professionally on mechanical systems, thermal systems \& production systems.

COURSE OUTCOMES

CO1	Analyze the static forces propagated from link to link of a four bar linkage and gear drive.
$\mathbf{C O 2}$	Analyze the dynamic forces propagated from link to link of a four bar linkage.
$\mathbf{C O 3}$	Analyze the concept and procedure for balancing of rotating and reciprocating masses, flywheel inertia and effects on energy fluctuations.
$\mathbf{C O 4}$	Analyze the effect of gyroscopic forces on stability of vehicles, ships and airplane.
$\mathbf{C O 5}$	Analyze vibration of single degree freedom systems with and without damping and principles of vibrations isolation.
$\mathbf{C O 6}$	Analyze the vibration due to whirling of shafts, vibration of multi-degree freedom systems and vibration measurement.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2								3	3	2	3
CO2	3	3	2	2								3	3	2	3
CO3	3	3	2	2								3	3	2	3
CO4	3	3	2	2								3	3	2	3
CO5	3	3	2	2								3	3	2	3
CO6	3	3	2	2								3	3	3	2

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME304	DYNAMICS OF MACHINERY	$\mathbf{2 - 1 - 0 - 3}$	2016

Prerequisite: ME301 Mechanics of Machinery

Course Objectives:

- To impart knowledge on force analysis of machinery, balancing of rotating and reciprocating masses, Gyroscopes, Energy fluctuation in Machines.
- To introduce the fundamentals in vibration, vibration analysis of single degree of freedom systems.
- To understand the physical significance and design of vibration systems with desired conditions

Syllabus

Force analysis of machinery - static and dynamic force analysis of plane motion mechanisms.
Flywheel analysis - static and dynamic balancing - balancing of rotating masses, gyroscopic couples. Vibrations - free vibrations of single degree freedom systems, damping, forced vibration, torsional vibration.

Expected outcome:

The students will be able to

1. Develop the design and practical problem solving skills in the area of mechanisms
2. Understand the basics of vibration and apply the concepts in design problems of mechanisms.

Text Books:

1. Ballaney P.L. Theory of Machines, Khanna Publishers, 1994
2. S. S. Rattan, Theory of Machines, Tata McGraw Hill, 2009
3. V. P. Singh, Theory of Machines, Dhanpat Rai, 2013

References :

1. E. Wilson, P. Sadler, Kinematics and Dynamics of Machinery, Pearson Education, 2003
2. Ghosh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated East West Press, 2003
3. H. Myskza, Machines and Mechanisms Applied Kinematic Analysis, Pearson Education, 4e, 2012
4. Holowenko, Dynamics of Machinery, John Wiley, 1995
5. J. E. Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGraw Hill, 1995
6. W.T.Thompson, Theory of vibration, Prentice Hall, 1997

Course Plan			
Module	Contents	Hours	End Sem. Exam Marks
I	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods Matrix methods - method of virtual work - analysis with sliding and pin friction	4 3	15\%
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems Force Analysis of spur- helical - bevel and worm gearing	4 3	15\%
FIRST INTERNAL EXAM			
III	Flywheel analysis - balancing - static and dynamic balancing balancing of masses rotating in several planes Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	4 3	15\%
IV	Gyroscope - gyroscopic couples Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile - stability of a two wheel vehicle -Stabilization of ship.	3 4	15\%
SECOND INTERNAL EXAM			
V	Introduction to vibrations - free vibrations of single degree freedom systems - energy Method	2	20\%
	Undamped and damped free vibrations - viscous damping - critical damping - logarithmic decrement - Coulomb damping - harmonically excited vibrations	3	
	Response of an undamped and damped system - beat phenomenon transmissibility	2	
VI	Whirling of shafts - critical speed - free torsional vibrations - self excitation and stability analysis - vibration control - vibration isolation - vibration absorbers	4	20\%
	Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters	3	
END SEMESTER EXAM			

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3X10 marks $=30$ marks)

Part B

There should be 2 questions each from module III and IV
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3 X10 marks $=30$ marks)

Part C

There should be 3 questions each from module V and VI
Each question carries 10 marks
Students will have to answer any four questions out of 6 (4X10 marks $=40$ marks)

Note: Each question can have a maximum of four sub questions, if needed.

QUESTION BANK

MODULE I			
Q:NO:	QUESTIONS	CO	KL
1	What do you mean by static force analysis?	CO1	K2
2	What is principle of superposition?	CO1	K2
3	Explain in detail - principle of virtual work. Derive an expression to find out torque and force on a slider crank mechanism by principle of virtual work.	CO1	K6
4	What are free body diagrams of a mechanism? How are they helpful in finding the various forces on the various members of a mechanism?	CO1	K2
5	Discuss the equilibrium of a four force member?	CO1	K2
6	Determine T2 and various forces for the system shown in fig. And $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}, \mathrm{CD}=21 \mathrm{~cm}, \mathrm{CE}=10 \mathrm{~cm}$	CO1	K5
7	Determine the couple T2 as applied in fig $A B=30 \mathrm{~cm}, B C=45.5 \mathrm{~cm}, B E=17.5 \mathrm{~cm}$	CO1	K5
8	Fig shows a quaternary link $A B C D$ under the action of forces $\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~F} 3$ and F4 acting at A,B,C and D respectively. The link is in static equilibrium. Determine the magnitude of forces F2 and F3. (a)	CO1	K5

9	A four link mechanism as shown in fig. It is acted up on by a force of $80 \mathrm{~N}<150$ deg on link DC. $\mathrm{AD}=50 \mathrm{~mm}, \mathrm{AB}=40 \mathrm{~mm}, \mathrm{BC}=100$ $\mathrm{mm}, \mathrm{DC}=75 \mathrm{~mm}, \mathrm{DE}=35 \mathrm{~mm}$. Determine the input torque T on the link AB for static equilibrium of mechanism for the given configure	CO1	K5
10	In the four bar mechanism shown in fig. torque T3 \& T4 are $50 \mathrm{~N}-\mathrm{m}$ and $60 \mathrm{~N}-\mathrm{m}$ respectively. For the static equilibrium of system, find the required input torque $\mathrm{T} 2 . \mathrm{BC}=80 \mathrm{~cm}, \mathrm{AB}=35 \mathrm{~cm}, \mathrm{AD}=109 \mathrm{~cm}$, $\mathrm{CD}=38 \mathrm{~cm}$ $B C=80 \mathrm{~cm}, A B=35 \mathrm{~cm}, A D=109 \mathrm{~cm}, C D=38 \mathrm{~cm}$	CO1	K5

MODULE II

1	State and Explain D'Alemberts principle.	CO 2	K 3
2	Derive an expression to find out crank effort in an IC engine	CO 2	K 6
3	What is dynamic force analysis?	CO 2	K 2
4	What is inertia? Explain about inertia force.	CO 2	K 3
5	What do you mean by dynamically equivalent system? What do you mean by equivalent offset inertia force?	CO 2	K 2
6	A horizontal gas engine running at 210 rpm has a bore of 220 mm and stroke of 440 mm. the connecting rod is 924 mm long and reciprocating parts weigh 20 kg. When the crank has turned through an angle of 30 deg from inner dead center, the gas pressures on the cover and crank sides are $500 \mathrm{KN} / \mathrm{m}^{2}$ and $60 \mathrm{KN} / \mathrm{m}^{2}$ respectively.	K 5	

	Diameter of piston rod is 40 mm. determine a. turning moment on crank shaft b. thrust on bearings c. acceleration of flywheel which has a mass of 8 kg and radius of gyration of 600 mm while the power of gas engine is 22 KW		
7	The crank and connecting rod of a vertical petrol engine running at 1800 rpm are 60 mm and 270 mm respectively. The diameter of piston is 100 mm and the mass of reciprocating parts is 1.2 kg. During the expansion stroke when the crank has turned through 20 deg from top dead center, the gas pressure is 650 kN/m ${ }^{2}$. Determine a. the net force on piston b. the net load on gudgeon pin c. the thrust on cylinder walls d. the speed at which gudgeon pin load is reversed in direction	K 5	
8	How do we perform force analysis on a spur gear? Derive the expressions to find out tangential force, radial force and resultant forces on a spur gear	CO 2	K 6
9	How do we perform force analysis on a helical gear? Derive the expressions to find out tangential force, radial force, axial force and resultant forces on a helical gear	CO 2	K 6
10	Derive an expression to find out torque and force components in a reciprocating steam engine without considering the weight of connecting rod	CO 2	K 6

MODULE III

1	Explain the turning moment diagram of a four stroke cycle IC engines.	CO3	K3
2	What is the function of a flywheel and how does it differ from that of a governor?	CO3	K2
3	Prove that maximum fluctuation of energy $\Delta \mathrm{E}=\mathrm{E} * 2 \mathrm{Cs}$	CO3	K2
4	Derive the following expressions, for an uncoupled two cylinder locomotive engine a. Variation in tractive force b. Swaying couple c. Hammer blow	CO3	K6
5	Discuss the balancing of V engines	CO3	K2
6	A shaft carries 4 masses A,B,C and D of magnitude $200 \mathrm{~kg}, 300$ $\mathrm{kg}, 400 \mathrm{~kg}$ and 200 kg respectively and revolving at radii $80 \mathrm{~mm}, 70$ $\mathrm{mm}, 60 \mathrm{~mm}, 80 \mathrm{~mm}$ in planes measured from A at $300 \mathrm{~mm}, 400$ $\mathrm{mm}, 700 \mathrm{~mm}$. The angles between cranks measured anticlockwise are A to B 45 deg , B to C 70 deg , C to D is 120 deg . The balancing masses are to be placed in planes X and Y . The distance between planes A and X is 100 mm , between X and Y 400 mm and between Y and D is 200 mm . If the balancing masses revolve at a radius of 100 mm , find their magnitudes and angular positions	CO3	K5
7	The cranks and connecting rods of a 4 cylinder in line engine running at 1800 r.p. m are 60 mm and 240 mm each respectively and	CO3	K5

	the cylinders are spaced 150 mm apart. If the cylinders are numbered 1 to 4 in sequence from one end, the cranks appear at intervals of 90 deg in an end view in the order 1-4-2-3. The reciprocating mass corresponding to each cylinder is 1.5 kg . Determine a. Unbalanced primary and secondary forces b. Unbalanced Primary and secondary couples with reference to central plane of engine		
8	The turning moment diagram for a four stroke engine may be assumed for simplicity to be represented by four triangles, the areas of which from the line of zero pressure are as follows: Suction stroke $=0.45^{*} 10^{\wedge}-3 \mathrm{~m} 2$, compression stroke $=1.7 * 10^{\wedge}-3 \mathrm{~m} 2$, Expansion stroke $=6.8 * 10^{\wedge}-3 \mathrm{~m} 2$ and exhaust stroke $=0.65 * 10^{\wedge}$ 3 m 2 . Each m 2 of area represents $3 \mathrm{MN}-\mathrm{m}$ of energy. Assuming the resisting torque to be uniform, find the mass of rim of flywheel required to keep the speed between 202 and 198 rpm . The mean radius of rim is 1.2 m .	CO3	K5
9	A shaft carries 4 masses in parallel planes A, B, C and D in this order along its length. The masses at B and C are 18 kg and 12.5 kg respectively and each has an eccentricity of 80 mm . The angle between the masses at B and C is 100 deg and that between the masses at B and A is 190 deg , both being measured in same direction. The axial distance between the planes A and B is 100 mm and that between B and C is 200 mm . If the shaft is in complete dynamic balance, determine a. The magnitude of masses at A and D b. The distance between planes A and D. The angular position of mass at D.	CO 3	K5
10	$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four masses carried by a rotating shaft at radii 100, 125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 $\mathrm{kg}, 5 \mathrm{~kg}$ and 4 kg respectively. Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance	CO 3	K5
MODULE IV			
1	What do you understand by gyroscopic couple? Derive a formula for its magnitude.	CO4	K6
2	Describe the application of gyroscopic principles to aircrafts.	CO4	K2
3	Describe the gyroscopic effect on sea going vessels.	CO4	K2
4	Discuss the effect of the gyroscopic couple on a two wheeled vehicle when taking a turn.	CO4	K2
5	What will be the effect of the gyroscopic couple on a disc fixed at a certain angle to a rotating shaft?	CO 4	K1
6	A ship propelled by a turbine rotor which has a mass of 5 tonnes	CO4	K5

	and a speed of 2100 r.p.m. The rotor has a radius of gyration of 0.5 m and rotates in a clockwise direction when viewed from the stern. Find the gyroscopic effects in the following conditions: 1. The ship sails at a speed of $30 \mathrm{~km} / \mathrm{h}$ and steers to the left in a curve having 60 m radius. 2 . The ship pitches 6 degree above and 6 degree below the horizontal position. The bow is descending with its maximum velocity. The motion due to pitching is simple harmonic and the periodic time is 20 seconds. 3. The ship rolls and at a certain instant it has an angular velocity of $0.03 \mathrm{rad} / \mathrm{s}$ clockwise when viewed from stern. Determine also the maximum angular acceleration during pitching. Explain how the direction of motion due to gyroscopic effect is determined in each case.		
7	Explain the effect of the gyroscopic couple on the reaction of the four wheels of a vehicle negotiating a curve	CO4	K3
8	An aeroplane makes a complete half circle of 50 metres radius, towards left, when flying at 200 km per hour. The rotary engine and the propeller of the plane have a mass of 400 kg with a radius of gyration of 300 mm . The engine runs at 2400 r.p.m. clockwise, when viewed from the rear. Find the gyroscopic couple on the aircraft and state its effect on it. What will be the effect, if the aeroplane turns to its right instead of to the left?	CO 4	K5
9	The mass of the turbine rotor of a ship is 20 tonnes and has a radius of gyration of 0.60 m . Its speed is $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The ship pitches 6° above and 6° below the horizontal position. A complete oscillation takes 30 seconds and the motion is simple harmonic. Determine the following: 1. Maximum gyroscopic couple, 2. Maximum angular acceleration of the ship during pitching, and 3. The direction in which the bow will tend to turn when rising, if the rotation of the rotor is clockwise when looking from the left.	CO4	K5
10	The turbine rotor of a ship has a mass of 3500 kg . It has a radius of gyration of 0.45 m and a speed of $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. clockwise when looking from stern. Determine the gyroscopic couple and its effect upon the ship: 1 . When the ship is steering to the left on a curve of 100 m radius at a speed of $36 \mathrm{~km} / \mathrm{h}$. 2 . When the ship is pitching in a simple harmonic motion, the bow falling with its maximum velocity. The period of pitching is 40 seconds and the total angular displacement between the two extreme positions of pitching is 12 degrees	CO4	K5

MODULE V

2	Explain the term 'Logarithmic decrement' as applied to damped vibrations	CO 5	K3
3	Explain the terms 'under damping, critical damping' and 'over damping'	CO5	K3
4	Derive the differential equation characterizing the motion of an oscillation system subject to viscous damping and no periodic external force. Assuming the solution to the equation, find the frequency of oscillation of the system.	CO5	K6
5	Discuss briefly with neat sketches the longitudinal, transverse and torsional free vibrations	CO5	K2
6	A vertical shaft of 5 mm diameter is 200 mm long and is supported in long bearings at its ends. A disc of mass 50 kg is attached to the centre of the shaft. Neglecting any increase in stiffness due to the attachment of the disc to the shaft, find the critical speed of rotation and the maximum bending stress when the shaft is rotating at 75% of the critical speed. The centre of the disc is 0.25 mm from the geometric axis of the shaft. $\mathrm{E}=200$ GN/m2.	CO5	K5
7	Explain the term 'whirling speed' or 'critical speed' of a shaft. Prove that the whirling speed for a rotating shaft is the same as the frequency of natural transverse vibration.	CO5	K3
8	The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed force. Assume that the mass of the motor is equally distributed among the five springs. Determine: 1. stiffness of each spring; 2. dynamic force transmitted to the base at the operating speed; and 3. natural frequency of the system.	CO5	K5
9	The mass of a single degree damped vibrating system is 7.5 kg and makes 24 free oscillations in 14 seconds when disturbed from its equilibrium position. The amplitude of vibration reduces to 0.25 of its initial value after five oscillations. Determine: 1. stiffness of the spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to critical damping.	CO5	K5
10	A shaft 50 mm diameter and 3 metres long is simply supported at the ends and carries three loads of $1000 \mathrm{~N}, 1500 \mathrm{~N}$ and 750 N at $1 \mathrm{~m}, 2 \mathrm{~m}$ and 2.5 m from the left support.The Young's modulus for shaft material is $200 \mathrm{GN} / \mathrm{m} 2$. Find the frequency of transverse vibration.	CO5	K5
MODULE VI			
1	What is meant by torsionally equivalent length of a shaft as referred to a stepped shaft? Derive the expression for the equivalent length of a shaft which has several steps.	CO6	K6

2	How the natural frequency of torsional vibrations for a two rotor system is obtained?	CO6	K2
3	Derive an expression for the natural frequency of free transverse and longitudinal vibrations by equilibrium method	CO6	K6
4	Derive an expression for the frequency of free torsional vibrations for a shaft fixed at one end and carrying a load on the other free end	CO6	K6
5	Discuss the effect of inertia of a shaft on the free torsional vibrations.	CO6	K2
6	A steel shaft of 1.5 m long is 95 mm in diameter for the first 0.6 m of its length, 60 mm in diameter for the next 0.5 m of the length and 50 mm in diameter for the remaining 0.4 m of its length. The shaft carries two fly wheels at two ends, the first having a mass of 900 kg and 0.85 m radius of gyration located at the 95 mm diameter end and the second having a mass of 700 kg and 0.55 m radius of gyration located at the other end. Determine the location of the node and natural frequency of free torsional vibration of the system. The modulus of rigidity of shaft material may be taken as $80 \mathrm{GN} / \mathrm{m} 2$	CO6	K5
7	Establish the expression to determine the frequency of torsional vibrations of a geared system	CO6	K6
8	Describe the method of finding the natural frequency of torsional vibrations for a three rotor system.	CO6	K2
9	Three rotors A, B and C having moment of inertia of 2000, 6000 and $3500 \mathrm{~kg}-\mathrm{m} 2$ respectively are carried on a uniform shaft of 0.35 m diameter. The length of shaft between rotor A and B is 6 m and between B and C is 32 m . Find the natural frequency of torsional vibrations. Modulus of rigidity of shaft material is $80 \mathrm{GN} / \mathrm{m} 2$	CO6	K5
10	Three rotors A, B and C having moment of inertia of 2500, 6700 and $3800 \mathrm{~kg}-\mathrm{m} 2$ respectively are carried on a uniform shaft of 0.35 m diameter. The length of shaft between rotor A and B is 6 m and between B and C is 35 m . Find the natural frequency of torsional vibrations. Modulus of rigidity of shaft material is 85 GN/m2	CO6	K5

Module 1

Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) graphical methods

Matrix methods - method of virtual work - analysis with sliding and pin friction

$\stackrel{+}{8}$

(1)

Scanned by CamScanner

डे

$$
=44.7761 \times 50
$$

$$
\text { Case } 2 \text { LConsides }
$$

FBD（2）
$T_{2}^{\prime}=F_{12} \times b$

$$
\begin{array}{r}
908 \cdot 88 t 6= \\
x 19 k k+4= \\
9 \times{ }^{* 1}=
\end{array}
$$

$$
0=
$$
 Clocturise
 ${ }_{n}{ }^{2}{ }^{2}+\tau_{16}$
 $h=2.65 \mathrm{~cm}$
 玉
 $r_{2}^{\prime}=+2.238 \mathrm{~N} / \mathrm{m}$
 MンSロロ 4

 $f_{12}=F_{32}=F_{23}=F_{43}$

 $f_{12}=F_{32}=F_{23}=F_{43}$
 $734 \times h$ $\frac{74}{b}$ $=\frac{20}{0.39}$ $=51.28$
 ho 390 mm

 $$
\begin{aligned} & \delta_{2} 390 \mathrm{~mm} \\ & T_{4}=F_{34} \times h \\ & F_{34}=\frac{T_{4}}{h} \\ &=\frac{20}{0.39} \\ &=51.28 \end{aligned}
$$

$$
\begin{array}{ll|ll|l}
a & N & \sigma & \infty & \infty \\
\vdots & i & \sigma & \cdots & 0
\end{array}
$$

$$
\begin{aligned}
& \text { Force vectors } \\
& F_{2}=80 \angle 73.5^{\circ}=(80 \cos 73.5) i+(80 \operatorname{sios} 73.5) j \\
& F_{3}=144 \angle 58^{\circ}=22.72 i+76.71 j \\
& f_{4}=60 \angle 42^{\circ}=44.58 i+40.14 j \\
& \text { Position uectors } \\
& A B=0.5 \angle 60^{\circ}=0.25 i+0.43 j \\
& A E=0.325 \angle 60^{\circ}=0.16 i+0.28 j \\
& B C=0.66 \angle 111^{\circ}=0.64 i+0.12 j \\
& B F=0.297 \angle 11^{\circ}=0.29 i+0.05 j \\
& D C=0.56 \angle 100^{\circ}=-0.09 i+0.55 j \\
& D G=0.373 \angle 100^{\circ}=-0.06 i+0.36 j
\end{aligned}
$$

 $31.5969+-0.652 x=0$
$0.652 x=31.5969$
$x=-48.4615 \mathrm{~N}$
$-31.5969+(-0.021 x)-(0.631 x)=0$

Scanned by CamScanner

$$
\begin{array}{r}
x=-33.19 \mathrm{~N} \\
F_{34}=32.52 i-6.3061 \mathrm{j}
\end{array}
$$

$F_{34} \times A B$
1.94 8i-cx/9yc.0

$$
\text { T\&G4 ExAh 81-cx } 1994 \cdot 0
$$

$$
18.4572+(0.539 x+0.0171 x)=0
$$

$-(-32.52 i-6.30 j) \times(0.25 i+0.43 j)$
$18.4572+(0.5561 x) 20$
$8.4572+(0.539 x+0.0171 x)=0$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
i & j \\
32.52 & 6.30 \\
0.25 & 0.43
\end{array}\right| \\
& =12.4086 \mathrm{Nm}
\end{aligned}
$$

$$
30 j) \times(0.25 i+0.43 j)
$$

$$
\begin{aligned}
& \text { Sub: in } \sum M=0
\end{aligned}
$$

$$
\begin{aligned}
\text { Net torque } \tau & =\tau_{1}+\tau_{2}+\tau_{3} \\
& =-5.912+17.8278+12.4086 \\
& =24.3244 \mathrm{~N} / \mathrm{m} \\
& \text { Anticlockuise }
\end{aligned}
$$

Module 2

Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only),

Force Analysis of spur-helical - bevel and worm gearing

$$
\begin{aligned}
& \text { dest } x_{p}=r(1-\cos \theta) \\
& \text { uel } u_{p}=r \omega\left[\sin \theta+\frac{\sin 2 \theta-}{2 n}\right] \\
& a \operatorname{acc} a_{p}=r \omega^{2}\left[\cos \theta+\frac{\cos 2 \theta}{n}\right] \\
& n=\frac{l}{r}
\end{aligned}
$$

$$
\begin{aligned}
& F_{i}=m \times a \\
&=20 \times 104.7952 \\
&=2095.9048 \mathrm{~N}, a= \\
& F=16801.2375- \\
& 2095.9048 \\
&=14705.3326 \mathrm{~N}
\end{aligned}
$$

21.49
Pours, $\begin{aligned} P & =\tau_{r} \times \omega \\ 22 \times 10^{3} & =\tau_{r} \times 21.99\end{aligned}$
c) We haue
$\begin{aligned} & z^{235} / \mathrm{pOs} \\ & 6516 \cdot 088 \\ & \frac{28 \cdot 6}{880-95}\end{aligned}$
4.
$\begin{aligned} & \text { mamest } \\ & 1953.0385- \\ & 1953.0385\end{aligned}$
$\begin{aligned} & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$
$\begin{gathered}0 \\ \text { a } \\ \text { ह} \\ \text { 2 } \\ \frac{2}{3} \\ 3\end{gathered}$
$\frac{3}{6}$
$\begin{aligned} \text { torque } & = \\ I \times \alpha & = \\ 238 \times \alpha & =\end{aligned}$
(0.70)28

$$
=16366 \cdot 1744
$$

$$
0 \sin
$$

$$
\begin{aligned}
& \begin{aligned}
& =11.772 \mathrm{~N} \\
F & =F_{p}-F_{i}+m \\
& =5105.088
\end{aligned} \\
& 28394093 \text { N } \\
& =12521.2 \times 2366.1744 \\
& \text {, }
\end{aligned}
$$

[^0]th ? 3 x $\begin{array}{llllllllll} & 3 & 0\end{array}$
crankpin

ค ह 5
3
5

$(18.6 \times 067)+96 \pm 5 \cdot \angle 9071+07 \times 96 \quad \frac{1}{f}$

$$
\left.\begin{array}{lll}
3 & 7 & 0 \\
i & 3 & 0 \\
i & 3 & 0 \\
3 & 3 & 0
\end{array} \right\rvert\,
$$

N6960 G6S8て
 $(8+\theta) G 70^{\circ}$

$$
\overline{96 t t \cdot 48 t+\varepsilon}
$$

$$
\begin{aligned}
& \text { f } 896 \in 5: t 4011- \\
& 9941 \cdot \tau 6 .-x 0 t 1
\end{aligned}
$$

$$
\begin{aligned}
& \overline{6} \\
& \begin{array}{ll}
8 & \text { is } \\
i & 10
\end{array} \\
& \begin{array}{c}
5 \\
\text { is } \\
0 \\
0
\end{array} \frac{\pi}{\text { है }}
\end{aligned}
$$

[^1]$$
\because
$$
\[

$$
\begin{aligned}
= & i_{C} \cos (\alpha+\beta) \\
& 3 \neq 944 \times 07723 C
\end{aligned}
$$
\]

$$
\text { 4avo } 40103
$$

$$
\begin{array}{cc} 2 & 0 \\ 1, & 1 \\ \infty & 3 \\ 0 & \vdots \\ 3 & 0 \\ 3 & 3 \\ & 3 \\ 11 & 10 \\ 0 & 0 \\ 0 & 0 \\ 0 & i \\ 3 & 3 \end{array}
$$
 Engine speed
 $$
\begin{aligned} & w \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 3 \end{aligned}
$$
 copod ugt wo now p3/2
 $$
\text { ting pait in } 1.2 \mathrm{~kg} \text { Dening pewrs strok }
$$
 when piston tan wolled so mm t'om the
 IDC position. the press on the pention is
 $$
\text { sookvilm }{ }^{2} \text { find }
$$
 -usoediose lo scoorn cucn of er (io)urd lo viat
 $$
\begin{aligned} & \text { iog rod } \\ & \text { linder a } \end{aligned}
$$ Sookwher retere an the pentón
 Given datas
 $$
10 x+x+y
$$
 be pestion is
 $$
\frac{2 \pi \times 1800}{60}=
$$ mom
 $5 / p 08$ 64.881
 net force is zero
 argo C
 012000309706
 coiven del
 $$
\frac{09}{1 v \operatorname{lo6}}
$$

Scanned by CamScanner

$$
\begin{aligned}
& \sum_{19}^{1+} \\
& \\
& \varepsilon
\end{aligned}
$$

,

$$
\begin{aligned}
& \text { Normally we consider only the manses of } \\
& \text { reciprocating parts in a slider crank mecha- } \\
& \text { sins. It in easy to solus the problems in } \\
& \text { dynamic analysis because. the reciprocating } \\
& \text { part has only linear movement. } \\
& \text { But when we consider sans of cone- } \\
& \text { acting rod into account the problem will be } \\
& \text { complicated b/c the centre of gravity in } \\
& \text { always changing due to combined exsect } \\
& \text { of translation and rotation. In such } \\
& \text { cases an equicialent rigid lint should. } \\
& \text { consider by replacing the actual lint. }
\end{aligned}
$$

0:

Module 3

Flywheel analysis - balancing - static and dynamic balancing -balancing of masses rotating in several planes

Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines balancing of machines

$$
\begin{aligned}
& \text { Given datas } \\
& \text { rass, } D=2 \\
& \text { Radius of }
\end{aligned}
$$

$$
\text { from } 315 \mathrm{rpm}
$$

gyrat

$$
22 \times E x
$$

$$
k=1.6 \mathrm{~m}
$$

$$
\left(22.41^{2}-21.99^{2}\right)
$$

$$
\begin{aligned}
& \text { evergy }=4 / 2 \omega^{2} \\
& 42 \times 2574 \times 126.17 \\
& 882093.28017
\end{aligned}
$$

N

$$
\begin{aligned}
& \left(\omega_{1}^{2}-\omega_{2}^{2}\right) \\
& =\frac{2 \pi \times 214}{60} \\
& =22.41 \mathrm{rad} / \\
& =2 \frac{2 \pi \times 210}{60} \\
& =21.99 \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
& \left.41^{2}-21.99^{2}\right) \\
& \therefore \mathrm{kgm}^{2}
\end{aligned}
$$

$\begin{array}{lllllll}i & \rightarrow & i & \rightarrow & \rightarrow & \infty \\ i\end{array}$ a or b 0 a 0
or in

19-7Th(T)

$$
\begin{aligned}
& \begin{array}{l}
\text { sultant } \theta_{R}=\tan ^{-1}\left(\frac{F_{4}}{F_{H}}\right) \\
=\tan ^{-1}\left(\frac{8.4391}{21.6319}\right) \\
=21.312^{\circ}
\end{array}
\end{aligned}
$$

Scanned by CamScanner
balancing mass at a radius of 100 mm
就
4 masses A, B, C and D are attached to a
Shaft and revolve in the same plane.
The masses are $12,10,18$ and 15 kg resp.
their radius of rotations are $40 \mathrm{~mm}, 50 \mathrm{~mm}$
\& 60 mm and 30 mm . The angular position

$$
u \text { u }
$$

Scanned by CamScanner

> | c |
| :---: |
| e_{n}^{+} |
| + |
| c_{n} |

Cos Go

Module 4

Gyroscope - gyroscopic couples Force Analysis of spur- helical - bevel and worm gearing Gyroscopic action on vehicles - two wheelers, four wheelers, air planes and ships. Stability of an automobile - stability of a two wheel vehicle -Stabilization of ship.

$\begin{array}{ll}\times 3 \\ 1 & 1\end{array}$ mass
radius
9
mass moment
官
2
hg
हु
हु
S
ह
ते
6

$$
\begin{aligned}
& \text { § } \\
& \frac{j}{0} \\
& \stackrel{0}{5}
\end{aligned}
$$

$$
\text { lo } 707 \text { xip dip poro rooc rovos mon 7? }
$$

Lanticlockwine, precession] with speed up
be -ue, asticlock wix direction. so
men offros cioppions riohergi copparyo

$$
\mathrm{rad} / \mathrm{sec} \text {. The actius couple will be clocku }
$$

onpog acooverro agp cirgM.

$$
\begin{aligned}
& \text { (rcmoy) } \\
& \text { x, deno. © गotros गx0. } \\
& 7513
\end{aligned}
$$

$$
\begin{aligned}
& \text { dowsuards }
\end{aligned}
$$

$$
8
$$

$$
\begin{aligned}
& c_{0} \\
& 8 \\
& 8 \\
& 8
\end{aligned}
$$

Lanticio

$$
\underset{\sigma}{6} \xi \cdot \xi
$$

direction

$$
\mathrm{rad} / \mathrm{sec}
$$

$$
\partial \operatorname{col}
$$

bow

$$
\begin{aligned}
& \text { curgs ags dop poro, no } \\
& \text { mpaipo xormyojo.7co }
\end{aligned}
$$

corporeno
acrmopojo ag

outer urals.
 centrifugal
the vehicle. centrifugal force is developed

Scanned by CamScanner
Coup coup couple of wheels

$\begin{aligned} & .0098 \\ & 4980.0\end{aligned}$
8

Wheel radius is 290 mm

S
0
jु
-3
ह.
 cham porgan
bermanel iqn 1
n

$$
\begin{aligned}
& 1 \\
& 6 \\
& 6
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
20.9268 \\
Q=2 \tan ^{-1}(0.9268) \\
=42.825^{\circ} .
\end{array}
\end{aligned}
$$

> 2
> mpger 6

Module 5

Introduction to vibrations - free vibrations of single degree freedom systems - energy Method Undamped and damped free vibrations - viscous damping - critical damping - logarithmic decrement - Coulomb damping - harmonically excited vibrations

Response of undamped and damped system - beat phenomenon - transmissibility

Scanned by CamScanner

$$
\begin{aligned}
& \begin{array}{c}
\text { 5 N } \\
\text { के } \\
\text { ते } \\
\text { हे }
\end{array}
\end{aligned}
$$

Since $x=$

 3. 8

$\begin{array}{ll}0 & \\ c & v \\ \pm & 2 \\ 2 & \end{array}$
$\frac{\vec{e}}{6}$
$\stackrel{R}{\pi} \left\lvert\, \frac{R}{8}\right.$
vo

念
0

$$
0
$$

S. ती

$$
\begin{array}{lll}
2 & 2 & 3 \\
0 & 2 & 3 \\
5 & 0 & 3
\end{array}
$$

$$
E
$$

$$
\cdots
$$

$$
\begin{aligned}
& \text { a } \\
& \text { दg } \\
& \text { emporv } \\
& \text { a } \% \\
& \text { seren } \\
& \text { gabery }
\end{aligned}
$$

$$
\begin{array}{llll}
5 & 5 & 0 & 5 \\
0 & 8 & 5 & 3 \\
5 & 5 & 5
\end{array}
$$

$$
\begin{array}{llll}
5 & 6 & 5 & 5 \\
\frac{2}{3} & 6 & 5 & 5
\end{array}
$$

$$
\begin{aligned}
& \text { zoscuspara } \\
& \text { onpmocu s, bt }
\end{aligned}
$$

 2 है

$$
\begin{aligned}
& \begin{array}{l}
=\frac{981 \times 0.3}{0.007963 \times 200 \times 19} \\
=7.4943 \times 10^{-7} \mathrm{O} \\
=\frac{1}{2 \pi} \sqrt{\frac{9.81}{7.4943 \times 10}} \\
=575.82 \mathrm{HLz} .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given datas } \\
& l=0.75 \mathrm{~m} \\
& m=90 \mathrm{~kg} \\
& W=882.9 \mathrm{~N} \\
& a=0.25 \Rightarrow b=0.5 \mathrm{~m} \\
& A=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \\
& d=0.05 \mathrm{~m} .
\end{aligned}
$$

?

[^2]

\[

$$
\begin{aligned}
& E \\
& \begin{array}{lll}
3 & \text { 10 } \\
3: & 2 \\
+ & + & 2
\end{array} \\
& \begin{array}{l}
\text { equilibrium } \\
\text { forec } 20 \\
P_{d}+F_{S}=0 \\
+c x+k x=0
\end{array}
\end{aligned}
$$
\]

Scanned by CamScanner

$$
\begin{array}{lll}
\infty & n & j_{1} 1 o \\
i & 1 & 1+1
\end{array}
$$

$$
\begin{aligned}
& G . \operatorname{cog} \pi \log ^{2} \\
& -6\{
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{\xi w_{n} \pm \sqrt{\xi} w_{0}^{2}-w_{0}^{2}} \\
& w_{n} \pm w_{n} \sqrt{\xi^{2}-1} \\
& \operatorname{con} x=A e^{\left(-\xi w_{n}+w_{n} \sqrt{\xi^{2}-1}\right.} \\
& +B \cdot e^{\left(-\xi w_{n}-w_{n} \sqrt{\xi^{2}-1}\right)}
\end{aligned}
$$

$$
\begin{gathered}
3_{5}^{3} \\
\mathrm{~S}_{2} \\
\hline
\end{gathered}
$$

$$
\longleftrightarrow
$$

$$
\begin{aligned}
& \text { crompadaro } \\
& \text { chitiobor rap }
\end{aligned}
$$

$$
\cdots \rightarrow 7
$$

$$
\begin{array}{ccc}
3 & 5 \\
c^{2} & 5 \\
0 & 5 \\
0
\end{array}
$$

$$
\dot{6}
$$

$$
\begin{aligned}
& \text { It is the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cogarith } \\
& \text { oplitudes }
\end{aligned}
$$

bmic ratio of

$$
\left[\begin{array}{ccc}
3 & 2 & 3 \\
0 & 0 & 3 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)
$$

coses)

e) Ratio of
d) Logarithmic derement

bundarad
Gọdamo
 C2.
ar.

$$
\begin{aligned}
& \begin{array}{l}
\text { as } \\
\text { o } \\
\text { o } \\
\text { n } \\
\text { n }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 24 \mathrm{rad} / \mathrm{sec} \\
& \begin{array}{c}
C \\
1 \\
0 \\
0
\end{array} \\
& \frac{2}{1}
\end{aligned}
$$

[^0]:

[^1]: 0958

[^2]: $$
 \begin{align*}
 & \text { g } \\
 & \text { w } \tag{10}\\
 & \omega \mid E \quad 19 \\
 & \begin{array}{c}
 9 \\
 y
 \end{array} \\
 & \infty \\
 & \text { is } u \text { u } \\
 & \\
 & \begin{array}{ll}
 \infty & 0 \\
 4 & 0 \\
 0 & 0 \\
 \text { है } & \ddots \\
 0 &
 \end{array} \\
 & \text { - } \\
 & 19 \\
 & 3_{4}^{44}
 \end{align*}
 $$

